Marvels and pitfalls of the Langevin algorithm in noisy high-dimensional inference
Gradient-descent-based algorithms and their stochastic versions have widespread applications in machine learning and statistical inference. In this work, we carry out an analytic study of the performance of the algorithm most commonly considered in physics, the Langevin algorithm, in the context of...
المؤلفون الرئيسيون: | Sarao Mannelli, S, Biroli, G, Cammarota, C, Krzakala, F, Urbani, P, Zdeborová, L |
---|---|
التنسيق: | Journal article |
اللغة: | English |
منشور في: |
American Physical Society
2020
|
مواد مشابهة
-
Marvels and Pitfalls of the Langevin Algorithm in Noisy High-Dimensional Inference
حسب: Stefano Sarao Mannelli, وآخرون
منشور في: (2020-03-01) -
Thresholds of descending algorithms in inference problems
حسب: Sarao Mannelli, S, وآخرون
منشور في: (2020) -
The Noisy and Marvelous Molecular World of Biology
حسب: Felix Ritort
منشور في: (2019-04-01) -
Theoretical characterization of uncertainty in high-dimensional linear classification
حسب: Lucas Clarté, وآخرون
منشور في: (2023-01-01) -
Glassy Nature of the Hard Phase in Inference Problems
حسب: Fabrizio Antenucci, وآخرون
منشور في: (2019-01-01)