Marvels and pitfalls of the Langevin algorithm in noisy high-dimensional inference
Gradient-descent-based algorithms and their stochastic versions have widespread applications in machine learning and statistical inference. In this work, we carry out an analytic study of the performance of the algorithm most commonly considered in physics, the Langevin algorithm, in the context of...
Hlavní autoři: | Sarao Mannelli, S, Biroli, G, Cammarota, C, Krzakala, F, Urbani, P, Zdeborová, L |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
American Physical Society
2020
|
Podobné jednotky
-
Marvels and Pitfalls of the Langevin Algorithm in Noisy High-Dimensional Inference
Autor: Stefano Sarao Mannelli, a další
Vydáno: (2020-03-01) -
Thresholds of descending algorithms in inference problems
Autor: Sarao Mannelli, S, a další
Vydáno: (2020) -
The Noisy and Marvelous Molecular World of Biology
Autor: Felix Ritort
Vydáno: (2019-04-01) -
Theoretical characterization of uncertainty in high-dimensional linear classification
Autor: Lucas Clarté, a další
Vydáno: (2023-01-01) -
Glassy Nature of the Hard Phase in Inference Problems
Autor: Fabrizio Antenucci, a další
Vydáno: (2019-01-01)