Marvels and pitfalls of the Langevin algorithm in noisy high-dimensional inference
Gradient-descent-based algorithms and their stochastic versions have widespread applications in machine learning and statistical inference. In this work, we carry out an analytic study of the performance of the algorithm most commonly considered in physics, the Langevin algorithm, in the context of...
Κύριοι συγγραφείς: | Sarao Mannelli, S, Biroli, G, Cammarota, C, Krzakala, F, Urbani, P, Zdeborová, L |
---|---|
Μορφή: | Journal article |
Γλώσσα: | English |
Έκδοση: |
American Physical Society
2020
|
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Marvels and Pitfalls of the Langevin Algorithm in Noisy High-Dimensional Inference
ανά: Stefano Sarao Mannelli, κ.ά.
Έκδοση: (2020-03-01) -
Thresholds of descending algorithms in inference problems
ανά: Sarao Mannelli, S, κ.ά.
Έκδοση: (2020) -
The Noisy and Marvelous Molecular World of Biology
ανά: Felix Ritort
Έκδοση: (2019-04-01) -
Theoretical characterization of uncertainty in high-dimensional linear classification
ανά: Lucas Clarté, κ.ά.
Έκδοση: (2023-01-01) -
Glassy Nature of the Hard Phase in Inference Problems
ανά: Fabrizio Antenucci, κ.ά.
Έκδοση: (2019-01-01)