Marvels and pitfalls of the Langevin algorithm in noisy high-dimensional inference
Gradient-descent-based algorithms and their stochastic versions have widespread applications in machine learning and statistical inference. In this work, we carry out an analytic study of the performance of the algorithm most commonly considered in physics, the Langevin algorithm, in the context of...
Auteurs principaux: | Sarao Mannelli, S, Biroli, G, Cammarota, C, Krzakala, F, Urbani, P, Zdeborová, L |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
American Physical Society
2020
|
Documents similaires
-
Marvels and Pitfalls of the Langevin Algorithm in Noisy High-Dimensional Inference
par: Stefano Sarao Mannelli, et autres
Publié: (2020-03-01) -
Thresholds of descending algorithms in inference problems
par: Sarao Mannelli, S, et autres
Publié: (2020) -
The Noisy and Marvelous Molecular World of Biology
par: Felix Ritort
Publié: (2019-04-01) -
Theoretical characterization of uncertainty in high-dimensional linear classification
par: Lucas Clarté, et autres
Publié: (2023-01-01) -
Glassy Nature of the Hard Phase in Inference Problems
par: Fabrizio Antenucci, et autres
Publié: (2019-01-01)