Marvels and pitfalls of the Langevin algorithm in noisy high-dimensional inference
Gradient-descent-based algorithms and their stochastic versions have widespread applications in machine learning and statistical inference. In this work, we carry out an analytic study of the performance of the algorithm most commonly considered in physics, the Langevin algorithm, in the context of...
Main Authors: | Sarao Mannelli, S, Biroli, G, Cammarota, C, Krzakala, F, Urbani, P, Zdeborová, L |
---|---|
פורמט: | Journal article |
שפה: | English |
יצא לאור: |
American Physical Society
2020
|
פריטים דומים
-
Marvels and Pitfalls of the Langevin Algorithm in Noisy High-Dimensional Inference
מאת: Stefano Sarao Mannelli, et al.
יצא לאור: (2020-03-01) -
Thresholds of descending algorithms in inference problems
מאת: Sarao Mannelli, S, et al.
יצא לאור: (2020) -
The Noisy and Marvelous Molecular World of Biology
מאת: Felix Ritort
יצא לאור: (2019-04-01) -
Theoretical characterization of uncertainty in high-dimensional linear classification
מאת: Lucas Clarté, et al.
יצא לאור: (2023-01-01) -
Glassy Nature of the Hard Phase in Inference Problems
מאת: Fabrizio Antenucci, et al.
יצא לאור: (2019-01-01)