Marvels and pitfalls of the Langevin algorithm in noisy high-dimensional inference
Gradient-descent-based algorithms and their stochastic versions have widespread applications in machine learning and statistical inference. In this work, we carry out an analytic study of the performance of the algorithm most commonly considered in physics, the Langevin algorithm, in the context of...
Үндсэн зохиолчид: | Sarao Mannelli, S, Biroli, G, Cammarota, C, Krzakala, F, Urbani, P, Zdeborová, L |
---|---|
Формат: | Journal article |
Хэл сонгох: | English |
Хэвлэсэн: |
American Physical Society
2020
|
Ижил төстэй зүйлс
-
Marvels and Pitfalls of the Langevin Algorithm in Noisy High-Dimensional Inference
-н: Stefano Sarao Mannelli, зэрэг
Хэвлэсэн: (2020-03-01) -
Thresholds of descending algorithms in inference problems
-н: Sarao Mannelli, S, зэрэг
Хэвлэсэн: (2020) -
The Noisy and Marvelous Molecular World of Biology
-н: Felix Ritort
Хэвлэсэн: (2019-04-01) -
Theoretical characterization of uncertainty in high-dimensional linear classification
-н: Lucas Clarté, зэрэг
Хэвлэсэн: (2023-01-01) -
Glassy Nature of the Hard Phase in Inference Problems
-н: Fabrizio Antenucci, зэрэг
Хэвлэсэн: (2019-01-01)