Marvels and pitfalls of the Langevin algorithm in noisy high-dimensional inference
Gradient-descent-based algorithms and their stochastic versions have widespread applications in machine learning and statistical inference. In this work, we carry out an analytic study of the performance of the algorithm most commonly considered in physics, the Langevin algorithm, in the context of...
Автори: | Sarao Mannelli, S, Biroli, G, Cammarota, C, Krzakala, F, Urbani, P, Zdeborová, L |
---|---|
Формат: | Journal article |
Мова: | English |
Опубліковано: |
American Physical Society
2020
|
Схожі ресурси
Схожі ресурси
-
Marvels and Pitfalls of the Langevin Algorithm in Noisy High-Dimensional Inference
за авторством: Stefano Sarao Mannelli, та інші
Опубліковано: (2020-03-01) -
Thresholds of descending algorithms in inference problems
за авторством: Sarao Mannelli, S, та інші
Опубліковано: (2020) -
The Noisy and Marvelous Molecular World of Biology
за авторством: Felix Ritort
Опубліковано: (2019-04-01) -
Theoretical characterization of uncertainty in high-dimensional linear classification
за авторством: Lucas Clarté, та інші
Опубліковано: (2023-01-01) -
Glassy Nature of the Hard Phase in Inference Problems
за авторством: Fabrizio Antenucci, та інші
Опубліковано: (2019-01-01)