Marvels and pitfalls of the Langevin algorithm in noisy high-dimensional inference

Gradient-descent-based algorithms and their stochastic versions have widespread applications in machine learning and statistical inference. In this work, we carry out an analytic study of the performance of the algorithm most commonly considered in physics, the Langevin algorithm, in the context of...

Повний опис

Бібліографічні деталі
Автори: Sarao Mannelli, S, Biroli, G, Cammarota, C, Krzakala, F, Urbani, P, Zdeborová, L
Формат: Journal article
Мова:English
Опубліковано: American Physical Society 2020