Gaia16apd – a link between fast and slowly declining type I superluminous supernovae

We present ultraviolet (UV), optical and infrared photometry and optical spectroscopy of the type Ic superluminous supernova (SLSN) Gaia16apd (=SN 2016eay), covering its evolution from 26 d before the g-band peak to 234.1 d after the peak. Gaia16apd was followed as a part of the NOT Unbiased Transie...

Full description

Bibliographic Details
Main Authors: Kangas, T, Blagorodnova, N, Mattila, S, Lundqvist, P, Fraser, M, Burgaz, U, Cappellaro, E, Martínez, JM, Elias-Rosa, N, Hardy, LK, Harmanen, J, Hsiao, EY, Isern, J, Kankare, E, Kołaczkowski, Z, Nielsen, MB, Reynolds, TM, Rhodes, L, Somero, A, Stritzinger, MD, Wyrzykowski, Ł
Format: Journal article
Language:English
Published: Oxford University Press 2017
Description
Summary:We present ultraviolet (UV), optical and infrared photometry and optical spectroscopy of the type Ic superluminous supernova (SLSN) Gaia16apd (=SN 2016eay), covering its evolution from 26 d before the g-band peak to 234.1 d after the peak. Gaia16apd was followed as a part of the NOT Unbiased Transient Survey (NUTS). It is one of the closest SLSNe known (z = 0.102 ± 0.001), with detailed optical and UV observations covering the peak. Gaia16apd is a spectroscopically typical type Ic SLSN, exhibiting the characteristic blue early spectra with O II absorption, and reaches a peak Mg = −21.8 ± 0.1 mag. However, photometrically it exhibits an evolution intermediate between the fast and slowly declining type Ic SLSNe, with an early evolution closer to the fast-declining events. Together with LSQ12dlf, another SLSN with similar properties, it demonstrates a possible continuum between fast and slowly declining events. It is unusually UV-bright even for an SLSN, reaching a non-K-corrected Muvm2 −23.3 mag, the only other type Ic SLSN with similar UV brightness being SN 2010gx. Assuming that Gaia16apd was powered by magnetar spin-down, we derive a period of P = 1.9 ± 0.2 ms and a magnetic field of B = 1.9 ± 0.2 × 1014 G for the magnetar. The estimated ejecta mass is between 8 and 16 M, and the kinetic energy between 1.3 and 2.5 × 1052 erg, depending on opacity and assuming that the entire ejecta is swept up into a thin shell. Despite the early photometric differences, the spectra at late times are similar to slowly declining type Ic SLSNe, implying that the two subclasses originate from similar progenitors.