Atom cloud detection and segmentation using a deep neural network
We use a deep neural network (NN) to detect and place region-of-interest (ROI) boxes around ultracold atom clouds in absorption and fluorescence images—with the ability to identify and bound multiple clouds within a single image. The NN also outputs segmentation masks that identify the size, shape a...
Päätekijät: | Hofer, LR, Krstajić, M, Juhász, P, Marchant, AL, Smith, RP |
---|---|
Aineistotyyppi: | Journal article |
Kieli: | English |
Julkaistu: |
IOP Publishing
2021
|
Samankaltaisia teoksia
-
Atom Cloud Detection and Segmentation Using a Deep Neural Network (Data)
Tekijä: Hofer, L R, et al.
Julkaistu: (2021) -
Measuring laser beams with a neural network
Tekijä: Hofer, LR, et al.
Julkaistu: (2022) -
Characterization of three-body loss in 166Er and optimized production of large Bose-Einstein condensates
Tekijä: Krstajić, M, et al.
Julkaistu: (2023) -
Measuring Laser Beams with a Neural Network (Data)
Tekijä: Hofer, L, et al.
Julkaistu: (2022) -
Evaluation of Deep Learning-Based Neural Network Methods for Cloud Detection and Segmentation
Tekijä: Stefan Hensel, et al.
Julkaistu: (2021-09-01)