Graph neural networks for network analysis
<p>With an increasing number of applications where data can be represented as graphs, graph neural networks (GNNs) are a useful tool to apply deep learning to graph data. Signed and directed networks are important forms of networks that are linked to many real-world problems, such as ranking f...
Главный автор: | He, Y |
---|---|
Другие авторы: | Dong, X |
Формат: | Диссертация |
Язык: | English |
Опубликовано: |
2024
|
Предметы: |
Схожие документы
-
JGNN: Graph Neural Networks on native Java
по: Emmanouil Krasanakis, и др.
Опубликовано: (2023-07-01) -
Auto-GNN: Neural architecture search of graph neural networks
по: Kaixiong Zhou, и др.
Опубликовано: (2022-11-01) -
FloodGNN-GRU: a spatio-temporal graph neural network for flood prediction
по: Arnold Kazadi, и др.
Опубликовано: (2024-01-01) -
Graph neural networks with a distribution of parametrized graphs
по: Lee, See Hian, и др.
Опубликовано: (2024) -
p2pGNN: A Decentralized Graph Neural Network for Node Classification in Peer-to-Peer Networks
по: Emmanouil Krasanakis, и др.
Опубликовано: (2022-01-01)