Graph neural networks for network analysis
<p>With an increasing number of applications where data can be represented as graphs, graph neural networks (GNNs) are a useful tool to apply deep learning to graph data. Signed and directed networks are important forms of networks that are linked to many real-world problems, such as ranking f...
Hlavní autor: | He, Y |
---|---|
Další autoři: | Dong, X |
Médium: | Diplomová práce |
Jazyk: | English |
Vydáno: |
2024
|
Témata: |
Podobné jednotky
-
JGNN: Graph Neural Networks on native Java
Autor: Emmanouil Krasanakis, a další
Vydáno: (2023-07-01) -
Auto-GNN: Neural architecture search of graph neural networks
Autor: Kaixiong Zhou, a další
Vydáno: (2022-11-01) -
FloodGNN-GRU: a spatio-temporal graph neural network for flood prediction
Autor: Arnold Kazadi, a další
Vydáno: (2024-01-01) -
Graph neural networks with a distribution of parametrized graphs
Autor: Lee, See Hian, a další
Vydáno: (2024) -
p2pGNN: A Decentralized Graph Neural Network for Node Classification in Peer-to-Peer Networks
Autor: Emmanouil Krasanakis, a další
Vydáno: (2022-01-01)