Graph neural networks for network analysis
<p>With an increasing number of applications where data can be represented as graphs, graph neural networks (GNNs) are a useful tool to apply deep learning to graph data. Signed and directed networks are important forms of networks that are linked to many real-world problems, such as ranking f...
1. Verfasser: | He, Y |
---|---|
Weitere Verfasser: | Dong, X |
Format: | Abschlussarbeit |
Sprache: | English |
Veröffentlicht: |
2024
|
Schlagworte: |
Ähnliche Einträge
Ähnliche Einträge
-
JGNN: Graph Neural Networks on native Java
von: Emmanouil Krasanakis, et al.
Veröffentlicht: (2023-07-01) -
Auto-GNN: Neural architecture search of graph neural networks
von: Kaixiong Zhou, et al.
Veröffentlicht: (2022-11-01) -
FloodGNN-GRU: a spatio-temporal graph neural network for flood prediction
von: Arnold Kazadi, et al.
Veröffentlicht: (2024-01-01) -
Graph neural networks with a distribution of parametrized graphs
von: Lee, See Hian, et al.
Veröffentlicht: (2024) -
p2pGNN: A Decentralized Graph Neural Network for Node Classification in Peer-to-Peer Networks
von: Emmanouil Krasanakis, et al.
Veröffentlicht: (2022-01-01)