Graph neural networks for network analysis
<p>With an increasing number of applications where data can be represented as graphs, graph neural networks (GNNs) are a useful tool to apply deep learning to graph data. Signed and directed networks are important forms of networks that are linked to many real-world problems, such as ranking f...
Päätekijä: | He, Y |
---|---|
Muut tekijät: | Dong, X |
Aineistotyyppi: | Opinnäyte |
Kieli: | English |
Julkaistu: |
2024
|
Aiheet: |
Samankaltaisia teoksia
-
JGNN: Graph Neural Networks on native Java
Tekijä: Emmanouil Krasanakis, et al.
Julkaistu: (2023-07-01) -
Auto-GNN: Neural architecture search of graph neural networks
Tekijä: Kaixiong Zhou, et al.
Julkaistu: (2022-11-01) -
FloodGNN-GRU: a spatio-temporal graph neural network for flood prediction
Tekijä: Arnold Kazadi, et al.
Julkaistu: (2024-01-01) -
Graph neural networks with a distribution of parametrized graphs
Tekijä: Lee, See Hian, et al.
Julkaistu: (2024) -
p2pGNN: A Decentralized Graph Neural Network for Node Classification in Peer-to-Peer Networks
Tekijä: Emmanouil Krasanakis, et al.
Julkaistu: (2022-01-01)