Graph neural networks for network analysis
<p>With an increasing number of applications where data can be represented as graphs, graph neural networks (GNNs) are a useful tool to apply deep learning to graph data. Signed and directed networks are important forms of networks that are linked to many real-world problems, such as ranking f...
Yazar: | He, Y |
---|---|
Diğer Yazarlar: | Dong, X |
Materyal Türü: | Tez |
Dil: | English |
Baskı/Yayın Bilgisi: |
2024
|
Konular: |
Benzer Materyaller
-
JGNN: Graph Neural Networks on native Java
Yazar:: Emmanouil Krasanakis, ve diğerleri
Baskı/Yayın Bilgisi: (2023-07-01) -
Auto-GNN: Neural architecture search of graph neural networks
Yazar:: Kaixiong Zhou, ve diğerleri
Baskı/Yayın Bilgisi: (2022-11-01) -
FloodGNN-GRU: a spatio-temporal graph neural network for flood prediction
Yazar:: Arnold Kazadi, ve diğerleri
Baskı/Yayın Bilgisi: (2024-01-01) -
Graph neural networks with a distribution of parametrized graphs
Yazar:: Lee, See Hian, ve diğerleri
Baskı/Yayın Bilgisi: (2024) -
p2pGNN: A Decentralized Graph Neural Network for Node Classification in Peer-to-Peer Networks
Yazar:: Emmanouil Krasanakis, ve diğerleri
Baskı/Yayın Bilgisi: (2022-01-01)