Ultrasound image representation learning by modeling sonographer visual attention
Image representations are commonly learned from class labels, which are a simplistic approximation of human image understanding. In this paper we demonstrate that transferable representations of images can be learned without manual annotations by modeling human visual attention. The basis of our ana...
Hlavní autoři: | Droste, R, Cai, Y, Sharma, H, Chatelain, P, Drukker, L, Papageorghiou, A, Noble, J |
---|---|
Médium: | Conference item |
Vydáno: |
Springer
2019
|
Podobné jednotky
-
Efficient ultrasound image analysis models with sonographer gaze assisted distillation
Autor: Patra, A, a další
Vydáno: (2018) -
Multimodal continual learning with sonographer eye-tracking in fetal ultrasound
Autor: Patra, A, a další
Vydáno: (2021) -
Towards capturing sonographic experience: cognition-inspired ultrasound video saliency prediction
Autor: Droste, R, a další
Vydáno: (2020) -
Clinical workflow of sonographers performing fetal anomaly ultrasound scans: deep learning-based analysis
Autor: Drukker, L, a další
Vydáno: (2022) -
Knowledge representation and learning of operator clinical workflow from full-length routine fetal ultrasound scan videos
Autor: Sharma, H, a další
Vydáno: (2021)