An approximation to a sharp type solution of a density-dependent diffusion equation

In this paper, we use a perturbation method to obtain an approximation to a saddle-saddle heteroclinic trajectory of an autonomous system of ordinary differential equations (ODEs) arising in the equation $u_t= [(u+\epsilon u^2)u_x]_x+u(1-u)$ in the case of travelling wave solutions (t.w.s.): $ u(x,t...

Full description

Bibliographic Details
Main Authors: Sánchez-Garduño, F, Maini, P
Format: Journal article
Published: 1994
_version_ 1797086069917745152
author Sánchez-Garduño, F
Maini, P
author_facet Sánchez-Garduño, F
Maini, P
author_sort Sánchez-Garduño, F
collection OXFORD
description In this paper, we use a perturbation method to obtain an approximation to a saddle-saddle heteroclinic trajectory of an autonomous system of ordinary differential equations (ODEs) arising in the equation $u_t= [(u+\epsilon u^2)u_x]_x+u(1-u)$ in the case of travelling wave solutions (t.w.s.): $ u(x,t) = \phi (x - ct)$. We compare the approximate form of the solution profile and speed thus obtained with the actual solution of the full model and the calculated speed, respectively.
first_indexed 2024-03-07T02:16:47Z
format Journal article
id oxford-uuid:a2856105-6931-4a48-9240-2a7da9e65663
institution University of Oxford
last_indexed 2024-03-07T02:16:47Z
publishDate 1994
record_format dspace
spelling oxford-uuid:a2856105-6931-4a48-9240-2a7da9e656632022-03-27T02:20:41ZAn approximation to a sharp type solution of a density-dependent diffusion equationJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:a2856105-6931-4a48-9240-2a7da9e65663Mathematical Institute - ePrints1994Sánchez-Garduño, FMaini, PIn this paper, we use a perturbation method to obtain an approximation to a saddle-saddle heteroclinic trajectory of an autonomous system of ordinary differential equations (ODEs) arising in the equation $u_t= [(u+\epsilon u^2)u_x]_x+u(1-u)$ in the case of travelling wave solutions (t.w.s.): $ u(x,t) = \phi (x - ct)$. We compare the approximate form of the solution profile and speed thus obtained with the actual solution of the full model and the calculated speed, respectively.
spellingShingle Sánchez-Garduño, F
Maini, P
An approximation to a sharp type solution of a density-dependent diffusion equation
title An approximation to a sharp type solution of a density-dependent diffusion equation
title_full An approximation to a sharp type solution of a density-dependent diffusion equation
title_fullStr An approximation to a sharp type solution of a density-dependent diffusion equation
title_full_unstemmed An approximation to a sharp type solution of a density-dependent diffusion equation
title_short An approximation to a sharp type solution of a density-dependent diffusion equation
title_sort approximation to a sharp type solution of a density dependent diffusion equation
work_keys_str_mv AT sanchezgardunof anapproximationtoasharptypesolutionofadensitydependentdiffusionequation
AT mainip anapproximationtoasharptypesolutionofadensitydependentdiffusionequation
AT sanchezgardunof approximationtoasharptypesolutionofadensitydependentdiffusionequation
AT mainip approximationtoasharptypesolutionofadensitydependentdiffusionequation