要約: | <p>The intestinal epithelium represents one of the most actively renewing tissues in the body, and is widely used as a model system to study epithelial cell biology. ASPP2, a member of the ASPP (apoptosis stimulating protein of p53) protein family, has been shown to act as a regulator of epithelial cell polarity and tumour suppressor. This study investigated whether the dual function of ASPP2 is involved in the regulation of intestinal homeostasis and tumourigenesis, with a particular interest in the distinction between epithelial cell autonomous and non-autonomous mechanisms.</p> <p>Germline and intestinal epithelial cell-specific ASPP2 conditional knockout mice were employed in this study. Deficiency of ASPP2 in the intestinal epithelium resulted in delayed recovery from dextran sulfate sodium (DSS)-induced acute colitis, concurrent with a reduction in the expression of proinflammatory cytokines such as interleukin (IL)-1β and IL-6. Moreover, ASPP2-deficient mice showed increased susceptibility to Azoxymethane/DSS-induced colorectal tumourigenesis. While wild-type and ASPP2-deficient crypts showed similar incidence of tumour formation, the local immune microenvironment of ASPP2-deficient mice favoured tumour progression.</p> <p>The intestinal organoid culture was established to supplement <em>in vivo</em> experiments. The feasibility of the system was demonstrated with small intestinal organoids, in the context of proliferation, differentiation, and cell death. Using the established workflow, a colonic organoid-based tissue regeneration model was developed. The intrinsic susceptibility of organoids to DSS-induced cell death was not affected by the loss of ASPP2. However, ASPP2-deficient colonic organoids were less responsive to the pro-proliferative effects of IL-6, but were more sensitive to tumour necrosis factor-α-induced cell death in the presence of IL-22.</p> <p>In conclusion, this project undertook parallel examinations of animal models and organoids, demonstrating that a deficiency of ASPP2 in the intestinal epithelium results in dysregulated epithelial–immune cell interactions. This may partially explain the pathological conditions observed in ASPP2-deficient mice. Importantly, this study highlights the possibility of using organoids to investigate epithelial cell non-autonomous factors implicated in intestinal pathogenesis.</p>
|