DreamUp3D: object-centric generative models for single-view 3D scene understanding and real-to-sim transfer
3D scene understanding for robotic applications exhibits a unique set of requirements including real-time inference, object-centric latent representation learning, accurate 6D pose estimation and 3D reconstruction of objects. Current methods for scene understanding typically rely on a combination of...
主要な著者: | Wu, Y, Sáez de Ocáriz Borde, H, Collins, J, Jones, OP, Posner, I |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
IEEE
2024
|
類似資料
-
APEX: Unsupervised, object-centric scene segmentation and tracking for robot manipulation
著者:: Wu, Y, 等
出版事項: (2021) -
GENESIS: generative scene inference and sampling of object-centric latent representations
著者:: Engelcke, M, 等
出版事項: (2020) -
Multi-view fusion-based 3D object detection for robot indoor scene perception
著者:: Wang, Li, 等
出版事項: (2020) -
Multi-View Fusion-Based 3D Object Detection for Robot Indoor Scene Perception
著者:: Li Wang, 等
出版事項: (2019-09-01) -
Scene-conditional 3D object stylization and composition
著者:: Zhou, J, 等
出版事項: (2024)