New mixed finite element methods for natural convection with phase-change in porous media
This article is concerned with the mathematical and numerical analysis of a steady phase change problem for non-isothermal incompressible viscous flow. The system is formulated in terms of pseudostress, strain rate and velocity for the Navier–Stokes–Brinkman equation, whereas temperature, normal hea...
主要な著者: | Alvarez, M, Gatica, G, Gomez-Vargas, B, Ruiz-Baier, R, Ruiz Baier, R |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Springer
2019
|
類似資料
-
Stability and finite element approximation of phase change models for natural convection in porous media
著者:: Woodfield, J, 等
出版事項: (2019) -
Mixed and discontinuous finite volume element schemes for the optimal control of immiscible flow in porous media
著者:: Kumar, S, 等
出版事項: (2018) -
A mixed-primal finite element approximation of a sedimentation-consolidation system
著者:: Alvarez, M, 等
出版事項: (2015) -
Analysis and mixed-primal finite element discretisations for stress-assisted diffusion problems
著者:: Gatica, G, 等
出版事項: (2018) -
Mixed-primal finite element method for the coupling of Brinkman-Darcy flow and nonlinear transport
著者:: Alvarez, M, 等
出版事項: (2020)