Measurement of neutrino oscillation parameters from muon neutrino disappearance with an off-axis beam.

The T2K Collaboration reports a precision measurement of muon neutrino disappearance with an off-axis neutrino beam with a peak energy of 0.6 GeV. Near detector measurements are used to constrain the neutrino flux and cross section parameters. The Super-Kamiokande far detector, which is 295 km downs...

Full description

Bibliographic Details
Main Authors: Abe, K, Adam, J, Aihara, H, Akiri, T, Andreopoulos, C, Aoki, S, Ariga, A, Ariga, T, Assylbekov, S, Autiero, D, Barbi, M, Barker, G, Barr, G, Bass, M, Batkiewicz, M, Bay, F, Bentham, S, Berardi, V, Berger, B, Berkman, S, Bertram, I, Bhadra, S, Blaszczyk, F, Blondel, A, Bojechko, C
Format: Journal article
Language:English
Published: 2013
Description
Summary:The T2K Collaboration reports a precision measurement of muon neutrino disappearance with an off-axis neutrino beam with a peak energy of 0.6 GeV. Near detector measurements are used to constrain the neutrino flux and cross section parameters. The Super-Kamiokande far detector, which is 295 km downstream of the neutrino production target, collected data corresponding to 3.01×10(20) protons on target. In the absence of neutrino oscillations, 205±17 (syst) events are expected to be detected while only 58 muon neutrino event candidates are observed. A fit to the neutrino rate and energy spectrum, assuming three neutrino flavors and normal mass hierarchy yields a best-fit mixing angle sin2(θ23)=0.514±0.082 and mass splitting |Δm(32)(2)|=2.44(-0.15)(+0.17)×10(-3) eV2/c4. Our result corresponds to the maximal oscillation disappearance probability.