Federated in-network machine learning for privacy-preserving IoT traffic analysis
The expanding use of Internet-of-Things (IoT) has driven machine learning (ML)-based traffic analysis. 5G networks’ standards, requiring low-latency communications for time-critical services, pose new challenges to traffic analysis. They necessitate fast analysis and response, preventing service dis...
Main Authors: | Zang, M, Zheng, C, Koziak, T, Zilberman, N, Dittmann, L |
---|---|
פורמט: | Journal article |
שפה: | English |
יצא לאור: |
Association for Computing Machinery
2024
|
פריטים דומים
-
Federated learning-based in-network traffic analysis on IoT edge
מאת: Zang, M, et al.
יצא לאור: (2023) -
Towards continuous threat defense: in-network traffic analysis for IoT gateways
מאת: Zang, M, et al.
יצא לאור: (2023) -
Privacy-preserving blockchain-based federated learning for IoT devices
מאת: Zhao, Yang, et al.
יצא לאור: (2022) -
Federated Learning and Its Role in the Privacy Preservation of IoT Devices
מאת: Tanweer Alam, et al.
יצא לאור: (2022-08-01) -
Design and implementation of privacy-preserving federated learning algorithm for consumer IoT
מאת: Bin Zhao, et al.
יצא לאור: (2024-11-01)