On Winning Forecasting Competitions in Economics.

To explain which methods might win forecasting competitions on economic time series, we consider forecasting in an evolving economy subject to structural breaks, using mis-specified, data-based models. "Causal" models need not win when facing determinist...

Ամբողջական նկարագրություն

Մատենագիտական մանրամասներ
Հիմնական հեղինակներ: Clements, M, Hendry, D
Ձևաչափ: Journal article
Լեզու:English
Հրապարակվել է: Springer-Verlag 1999
Նկարագրություն
Ամփոփում:To explain which methods might win forecasting competitions on economic time series, we consider forecasting in an evolving economy subject to structural breaks, using mis-specified, data-based models. "Causal" models need not win when facing deterministic shifts, a primary factor underlying systematic forecast failure. We derive conditional forecast biases and unconditional (asymptotic) variances to show that when the forecast evaluation sample includes sub-periods following breaks, non-causal models will outperform at short horizons. This suggests using techniques which avoid systematic forecasting errors, including improved intercept corrections. An application to a small monetary model of the UK illustrates the theory.