Particle Markov chain Monte Carlo methods
Markov chain Monte Carlo and sequential Monte Carlo methods have emerged as the two main tools to sample from high dimensional probability distributions. Although asymptotic convergence of Markov chain Monte Carlo algorithms is ensured under weak assumptions, the performance of these algorithms is u...
Autores principales: | Andrieu, C, Doucet, A, Holenstein, R |
---|---|
Formato: | Journal article |
Lenguaje: | English |
Publicado: |
2010
|
Ejemplares similares
-
Particle Markov chain Monte Carlo for efficient numerical simulation
por: Andrieu, C, et al.
Publicado: (2009) -
On nonlinear Markov chain Monte Carlo
por: Andrieu, C, et al.
Publicado: (2011) -
Interacting particle Markov chain Monte Carlo
por: Doucet, A, et al.
Publicado: (2016) -
On Markov chain Monte Carlo Methods for Tall Data
por: Bardenet, R, et al.
Publicado: (2017) -
SEQUENTIALLY INTERACTING MARKOV CHAIN MONTE CARLO METHODS
por: Brockwell, A, et al.
Publicado: (2010)