Particle Markov chain Monte Carlo methods
Markov chain Monte Carlo and sequential Monte Carlo methods have emerged as the two main tools to sample from high dimensional probability distributions. Although asymptotic convergence of Markov chain Monte Carlo algorithms is ensured under weak assumptions, the performance of these algorithms is u...
Auteurs principaux: | Andrieu, C, Doucet, A, Holenstein, R |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
2010
|
Documents similaires
-
Particle Markov chain Monte Carlo for efficient numerical simulation
par: Andrieu, C, et autres
Publié: (2009) -
On nonlinear Markov chain Monte Carlo
par: Andrieu, C, et autres
Publié: (2011) -
Interacting particle Markov chain Monte Carlo
par: Doucet, A, et autres
Publié: (2016) -
On Markov chain Monte Carlo Methods for Tall Data
par: Bardenet, R, et autres
Publié: (2017) -
SEQUENTIALLY INTERACTING MARKOV CHAIN MONTE CARLO METHODS
par: Brockwell, A, et autres
Publié: (2010)