Particle Markov chain Monte Carlo methods
Markov chain Monte Carlo and sequential Monte Carlo methods have emerged as the two main tools to sample from high dimensional probability distributions. Although asymptotic convergence of Markov chain Monte Carlo algorithms is ensured under weak assumptions, the performance of these algorithms is u...
Main Authors: | Andrieu, C, Doucet, A, Holenstein, R |
---|---|
格式: | Journal article |
语言: | English |
出版: |
2010
|
相似书籍
-
Particle Markov chain Monte Carlo for efficient numerical simulation
由: Andrieu, C, et al.
出版: (2009) -
On nonlinear Markov chain Monte Carlo
由: Andrieu, C, et al.
出版: (2011) -
Interacting particle Markov chain Monte Carlo
由: Doucet, A, et al.
出版: (2016) -
On Markov chain Monte Carlo Methods for Tall Data
由: Bardenet, R, et al.
出版: (2017) -
SEQUENTIALLY INTERACTING MARKOV CHAIN MONTE CARLO METHODS
由: Brockwell, A, et al.
出版: (2010)