Time dependence of correlation functions following a quantum quench.

We show that the time dependence of correlation functions in an extended quantum system in d dimensions, which is prepared in the ground state of some Hamiltonian and then evolves without dissipation according to some other Hamiltonian, may be extracted using methods of boundary critical phenomena i...

Descripción completa

Detalles Bibliográficos
Autores principales: Calabrese, P, Cardy, J
Formato: Journal article
Lenguaje:English
Publicado: 2006
Descripción
Sumario:We show that the time dependence of correlation functions in an extended quantum system in d dimensions, which is prepared in the ground state of some Hamiltonian and then evolves without dissipation according to some other Hamiltonian, may be extracted using methods of boundary critical phenomena in d + 1 dimensions. For d = 1 particularly powerful results are available using conformal field theory. These are checked against those available from solvable models. They may be explained in terms of a picture, valid more generally, whereby quasiparticles, entangled over regions of the order of the correlation length in the initial state, then propagate classically through the system.