Multi-modal learning from video, eye tracking, and pupillometry for operator skill characterization in clinical fetal ultrasound

This paper presents a novel multi-modal learning approach for automated skill characterization of obstetric ultrasound operators using heterogeneous spatio-temporal sensory cues, namely, scan video, eye-tracking data, and pupillometric data, acquired in the clinical environment. We address pertinent...

Description complète

Détails bibliographiques
Auteurs principaux: Sharma, H, Drukker, L, Papageorghiou, AT, Noble, JA
Format: Conference item
Langue:English
Publié: IEEE 2021

Documents similaires