Optimizing bulk segregant analysis of drug resistance using Plasmodium falciparum genetic crosses conducted in humanized mice

Classical malaria parasite genetic crosses involve isolation, genotyping, and phenotyping of progeny parasites, which is time consuming and laborious. We tested a rapid alternative approach-bulk segregant analysis (BSA)-that utilizes sequencing of bulk progeny populations with and without drug selec...

Fuld beskrivelse

Bibliografiske detaljer
Main Authors: Brenneman, KV, Li, X, Kumar, S, Delgado, E, Checkley, LA, Shoue, DA, Reyes, A, Abatiyow, BA, Haile, MT, Tripura, R, Peto, T, Lek, D, Button-Simons, KA, Kappe, SHI, Dhorda, M, Nosten, F, Nkhoma, SC, Cheeseman, IH, Vaughan, AM, Ferdig, MT, Anderson, TJC
Format: Journal article
Sprog:English
Udgivet: Cell Press 2022
_version_ 1826307770797785088
author Brenneman, KV
Li, X
Kumar, S
Delgado, E
Checkley, LA
Shoue, DA
Reyes, A
Abatiyow, BA
Haile, MT
Tripura, R
Peto, T
Lek, D
Button-Simons, KA
Kappe, SHI
Dhorda, M
Nosten, F
Nkhoma, SC
Cheeseman, IH
Vaughan, AM
Ferdig, MT
Anderson, TJC
author_facet Brenneman, KV
Li, X
Kumar, S
Delgado, E
Checkley, LA
Shoue, DA
Reyes, A
Abatiyow, BA
Haile, MT
Tripura, R
Peto, T
Lek, D
Button-Simons, KA
Kappe, SHI
Dhorda, M
Nosten, F
Nkhoma, SC
Cheeseman, IH
Vaughan, AM
Ferdig, MT
Anderson, TJC
author_sort Brenneman, KV
collection OXFORD
description Classical malaria parasite genetic crosses involve isolation, genotyping, and phenotyping of progeny parasites, which is time consuming and laborious. We tested a rapid alternative approach-bulk segregant analysis (BSA)-that utilizes sequencing of bulk progeny populations with and without drug selection for rapid identification of drug resistance loci. We used dihydroartemisinin (DHA) selection in two genetic crosses and investigated how synchronization, cryopreservation, and the drug selection regimen impacted BSA success. We detected a robust quantitative trait locus (QTL) at kelch13 in both crosses but did not detect QTLs at four other candidate loci. QTLs were detected using synchronized, but not unsynchronized progeny pools, consistent with the stage-specific action of DHA. We also successfully applied BSA to cryopreserved progeny pools, expanding the utility of this approach. We conclude that BSA provides a powerful approach for investigating the genetic architecture of drug resistance in Plasmodium falciparum.
first_indexed 2024-03-07T07:08:05Z
format Journal article
id oxford-uuid:a6b43b20-5999-4ecd-aad5-1198957386de
institution University of Oxford
language English
last_indexed 2024-03-07T07:08:05Z
publishDate 2022
publisher Cell Press
record_format dspace
spelling oxford-uuid:a6b43b20-5999-4ecd-aad5-1198957386de2022-05-20T09:24:47ZOptimizing bulk segregant analysis of drug resistance using Plasmodium falciparum genetic crosses conducted in humanized miceJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:a6b43b20-5999-4ecd-aad5-1198957386deEnglishSymplectic ElementsCell Press2022Brenneman, KVLi, XKumar, SDelgado, ECheckley, LAShoue, DAReyes, AAbatiyow, BAHaile, MTTripura, RPeto, TLek, DButton-Simons, KAKappe, SHIDhorda, MNosten, FNkhoma, SCCheeseman, IHVaughan, AMFerdig, MTAnderson, TJCClassical malaria parasite genetic crosses involve isolation, genotyping, and phenotyping of progeny parasites, which is time consuming and laborious. We tested a rapid alternative approach-bulk segregant analysis (BSA)-that utilizes sequencing of bulk progeny populations with and without drug selection for rapid identification of drug resistance loci. We used dihydroartemisinin (DHA) selection in two genetic crosses and investigated how synchronization, cryopreservation, and the drug selection regimen impacted BSA success. We detected a robust quantitative trait locus (QTL) at kelch13 in both crosses but did not detect QTLs at four other candidate loci. QTLs were detected using synchronized, but not unsynchronized progeny pools, consistent with the stage-specific action of DHA. We also successfully applied BSA to cryopreserved progeny pools, expanding the utility of this approach. We conclude that BSA provides a powerful approach for investigating the genetic architecture of drug resistance in Plasmodium falciparum.
spellingShingle Brenneman, KV
Li, X
Kumar, S
Delgado, E
Checkley, LA
Shoue, DA
Reyes, A
Abatiyow, BA
Haile, MT
Tripura, R
Peto, T
Lek, D
Button-Simons, KA
Kappe, SHI
Dhorda, M
Nosten, F
Nkhoma, SC
Cheeseman, IH
Vaughan, AM
Ferdig, MT
Anderson, TJC
Optimizing bulk segregant analysis of drug resistance using Plasmodium falciparum genetic crosses conducted in humanized mice
title Optimizing bulk segregant analysis of drug resistance using Plasmodium falciparum genetic crosses conducted in humanized mice
title_full Optimizing bulk segregant analysis of drug resistance using Plasmodium falciparum genetic crosses conducted in humanized mice
title_fullStr Optimizing bulk segregant analysis of drug resistance using Plasmodium falciparum genetic crosses conducted in humanized mice
title_full_unstemmed Optimizing bulk segregant analysis of drug resistance using Plasmodium falciparum genetic crosses conducted in humanized mice
title_short Optimizing bulk segregant analysis of drug resistance using Plasmodium falciparum genetic crosses conducted in humanized mice
title_sort optimizing bulk segregant analysis of drug resistance using plasmodium falciparum genetic crosses conducted in humanized mice
work_keys_str_mv AT brennemankv optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice
AT lix optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice
AT kumars optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice
AT delgadoe optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice
AT checkleyla optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice
AT shoueda optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice
AT reyesa optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice
AT abatiyowba optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice
AT hailemt optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice
AT tripurar optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice
AT petot optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice
AT lekd optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice
AT buttonsimonska optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice
AT kappeshi optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice
AT dhordam optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice
AT nostenf optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice
AT nkhomasc optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice
AT cheesemanih optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice
AT vaughanam optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice
AT ferdigmt optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice
AT andersontjc optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice