Optimizing bulk segregant analysis of drug resistance using Plasmodium falciparum genetic crosses conducted in humanized mice
Classical malaria parasite genetic crosses involve isolation, genotyping, and phenotyping of progeny parasites, which is time consuming and laborious. We tested a rapid alternative approach-bulk segregant analysis (BSA)-that utilizes sequencing of bulk progeny populations with and without drug selec...
Autori principali: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Natura: | Journal article |
Lingua: | English |
Pubblicazione: |
Cell Press
2022
|
_version_ | 1826307770797785088 |
---|---|
author | Brenneman, KV Li, X Kumar, S Delgado, E Checkley, LA Shoue, DA Reyes, A Abatiyow, BA Haile, MT Tripura, R Peto, T Lek, D Button-Simons, KA Kappe, SHI Dhorda, M Nosten, F Nkhoma, SC Cheeseman, IH Vaughan, AM Ferdig, MT Anderson, TJC |
author_facet | Brenneman, KV Li, X Kumar, S Delgado, E Checkley, LA Shoue, DA Reyes, A Abatiyow, BA Haile, MT Tripura, R Peto, T Lek, D Button-Simons, KA Kappe, SHI Dhorda, M Nosten, F Nkhoma, SC Cheeseman, IH Vaughan, AM Ferdig, MT Anderson, TJC |
author_sort | Brenneman, KV |
collection | OXFORD |
description | Classical malaria parasite genetic crosses involve isolation, genotyping, and phenotyping of progeny parasites, which is time consuming and laborious. We tested a rapid alternative approach-bulk segregant analysis (BSA)-that utilizes sequencing of bulk progeny populations with and without drug selection for rapid identification of drug resistance loci. We used dihydroartemisinin (DHA) selection in two genetic crosses and investigated how synchronization, cryopreservation, and the drug selection regimen impacted BSA success. We detected a robust quantitative trait locus (QTL) at kelch13 in both crosses but did not detect QTLs at four other candidate loci. QTLs were detected using synchronized, but not unsynchronized progeny pools, consistent with the stage-specific action of DHA. We also successfully applied BSA to cryopreserved progeny pools, expanding the utility of this approach. We conclude that BSA provides a powerful approach for investigating the genetic architecture of drug resistance in Plasmodium falciparum. |
first_indexed | 2024-03-07T07:08:05Z |
format | Journal article |
id | oxford-uuid:a6b43b20-5999-4ecd-aad5-1198957386de |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-07T07:08:05Z |
publishDate | 2022 |
publisher | Cell Press |
record_format | dspace |
spelling | oxford-uuid:a6b43b20-5999-4ecd-aad5-1198957386de2022-05-20T09:24:47ZOptimizing bulk segregant analysis of drug resistance using Plasmodium falciparum genetic crosses conducted in humanized miceJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:a6b43b20-5999-4ecd-aad5-1198957386deEnglishSymplectic ElementsCell Press2022Brenneman, KVLi, XKumar, SDelgado, ECheckley, LAShoue, DAReyes, AAbatiyow, BAHaile, MTTripura, RPeto, TLek, DButton-Simons, KAKappe, SHIDhorda, MNosten, FNkhoma, SCCheeseman, IHVaughan, AMFerdig, MTAnderson, TJCClassical malaria parasite genetic crosses involve isolation, genotyping, and phenotyping of progeny parasites, which is time consuming and laborious. We tested a rapid alternative approach-bulk segregant analysis (BSA)-that utilizes sequencing of bulk progeny populations with and without drug selection for rapid identification of drug resistance loci. We used dihydroartemisinin (DHA) selection in two genetic crosses and investigated how synchronization, cryopreservation, and the drug selection regimen impacted BSA success. We detected a robust quantitative trait locus (QTL) at kelch13 in both crosses but did not detect QTLs at four other candidate loci. QTLs were detected using synchronized, but not unsynchronized progeny pools, consistent with the stage-specific action of DHA. We also successfully applied BSA to cryopreserved progeny pools, expanding the utility of this approach. We conclude that BSA provides a powerful approach for investigating the genetic architecture of drug resistance in Plasmodium falciparum. |
spellingShingle | Brenneman, KV Li, X Kumar, S Delgado, E Checkley, LA Shoue, DA Reyes, A Abatiyow, BA Haile, MT Tripura, R Peto, T Lek, D Button-Simons, KA Kappe, SHI Dhorda, M Nosten, F Nkhoma, SC Cheeseman, IH Vaughan, AM Ferdig, MT Anderson, TJC Optimizing bulk segregant analysis of drug resistance using Plasmodium falciparum genetic crosses conducted in humanized mice |
title | Optimizing bulk segregant analysis of drug resistance using Plasmodium falciparum genetic crosses conducted in humanized mice |
title_full | Optimizing bulk segregant analysis of drug resistance using Plasmodium falciparum genetic crosses conducted in humanized mice |
title_fullStr | Optimizing bulk segregant analysis of drug resistance using Plasmodium falciparum genetic crosses conducted in humanized mice |
title_full_unstemmed | Optimizing bulk segregant analysis of drug resistance using Plasmodium falciparum genetic crosses conducted in humanized mice |
title_short | Optimizing bulk segregant analysis of drug resistance using Plasmodium falciparum genetic crosses conducted in humanized mice |
title_sort | optimizing bulk segregant analysis of drug resistance using plasmodium falciparum genetic crosses conducted in humanized mice |
work_keys_str_mv | AT brennemankv optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice AT lix optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice AT kumars optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice AT delgadoe optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice AT checkleyla optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice AT shoueda optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice AT reyesa optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice AT abatiyowba optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice AT hailemt optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice AT tripurar optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice AT petot optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice AT lekd optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice AT buttonsimonska optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice AT kappeshi optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice AT dhordam optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice AT nostenf optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice AT nkhomasc optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice AT cheesemanih optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice AT vaughanam optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice AT ferdigmt optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice AT andersontjc optimizingbulksegregantanalysisofdrugresistanceusingplasmodiumfalciparumgeneticcrossesconductedinhumanizedmice |