Effects of image reconstruction on fiber orientation mapping from multichannel diffusion MRI: reducing the noise floor using SENSE.

PURPOSE: To examine the effects of the reconstruction algorithm of magnitude images from multichannel diffusion MRI on fiber orientation estimation. THEORY AND METHODS: It is well established that the method used to combine signals from different coil elements in multichannel MRI can have an impact...

Full description

Bibliographic Details
Main Authors: Sotiropoulos, SN, Moeller, S, Jbabdi, S, Xu, J, Andersson, J, Auerbach, E, Yacoub, E, Feinberg, D, Setsompop, K, Wald, L, Behrens, T, Ugurbil, K, Lenglet, C
Format: Journal article
Language:English
Published: 2013
_version_ 1797087141686149120
author Sotiropoulos, SN
Moeller, S
Jbabdi, S
Xu, J
Andersson, J
Auerbach, E
Yacoub, E
Feinberg, D
Setsompop, K
Wald, L
Behrens, T
Ugurbil, K
Lenglet, C
author_facet Sotiropoulos, SN
Moeller, S
Jbabdi, S
Xu, J
Andersson, J
Auerbach, E
Yacoub, E
Feinberg, D
Setsompop, K
Wald, L
Behrens, T
Ugurbil, K
Lenglet, C
author_sort Sotiropoulos, SN
collection OXFORD
description PURPOSE: To examine the effects of the reconstruction algorithm of magnitude images from multichannel diffusion MRI on fiber orientation estimation. THEORY AND METHODS: It is well established that the method used to combine signals from different coil elements in multichannel MRI can have an impact on the properties of the reconstructed magnitude image. Using a root-sum-of-squares approach results in a magnitude signal that follows an effective noncentral-χ distribution. As a result, the noise floor, the minimum measurable in the absence of any true signal, is elevated. This is particularly relevant for diffusion-weighted MRI, where the signal attenuation is of interest. RESULTS: In this study, we illustrate problems that such image reconstruction characteristics may cause in the estimation of fiber orientations, both for model-based and model-free approaches, when modern 32-channel coils are used. We further propose an alternative image reconstruction method that is based on sensitivity encoding (SENSE) and preserves the Rician nature of the single-channel, magnitude MR signal. We show that for the same k-space data, root-sum-of-squares can cause excessive overfitting and reduced precision in orientation estimation compared with the SENSE-based approach. CONCLUSION: These results highlight the importance of choosing the appropriate image reconstruction method for tractography studies that use multichannel receiver coils for diffusion MRI acquisition.
first_indexed 2024-03-07T02:31:48Z
format Journal article
id oxford-uuid:a77be86b-2ec0-4d16-8d85-bdf0bc4f541d
institution University of Oxford
language English
last_indexed 2024-03-07T02:31:48Z
publishDate 2013
record_format dspace
spelling oxford-uuid:a77be86b-2ec0-4d16-8d85-bdf0bc4f541d2022-03-27T02:54:59ZEffects of image reconstruction on fiber orientation mapping from multichannel diffusion MRI: reducing the noise floor using SENSE.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:a77be86b-2ec0-4d16-8d85-bdf0bc4f541dEnglishSymplectic Elements at Oxford2013Sotiropoulos, SNMoeller, SJbabdi, SXu, JAndersson, JAuerbach, EYacoub, EFeinberg, DSetsompop, KWald, LBehrens, TUgurbil, KLenglet, CPURPOSE: To examine the effects of the reconstruction algorithm of magnitude images from multichannel diffusion MRI on fiber orientation estimation. THEORY AND METHODS: It is well established that the method used to combine signals from different coil elements in multichannel MRI can have an impact on the properties of the reconstructed magnitude image. Using a root-sum-of-squares approach results in a magnitude signal that follows an effective noncentral-χ distribution. As a result, the noise floor, the minimum measurable in the absence of any true signal, is elevated. This is particularly relevant for diffusion-weighted MRI, where the signal attenuation is of interest. RESULTS: In this study, we illustrate problems that such image reconstruction characteristics may cause in the estimation of fiber orientations, both for model-based and model-free approaches, when modern 32-channel coils are used. We further propose an alternative image reconstruction method that is based on sensitivity encoding (SENSE) and preserves the Rician nature of the single-channel, magnitude MR signal. We show that for the same k-space data, root-sum-of-squares can cause excessive overfitting and reduced precision in orientation estimation compared with the SENSE-based approach. CONCLUSION: These results highlight the importance of choosing the appropriate image reconstruction method for tractography studies that use multichannel receiver coils for diffusion MRI acquisition.
spellingShingle Sotiropoulos, SN
Moeller, S
Jbabdi, S
Xu, J
Andersson, J
Auerbach, E
Yacoub, E
Feinberg, D
Setsompop, K
Wald, L
Behrens, T
Ugurbil, K
Lenglet, C
Effects of image reconstruction on fiber orientation mapping from multichannel diffusion MRI: reducing the noise floor using SENSE.
title Effects of image reconstruction on fiber orientation mapping from multichannel diffusion MRI: reducing the noise floor using SENSE.
title_full Effects of image reconstruction on fiber orientation mapping from multichannel diffusion MRI: reducing the noise floor using SENSE.
title_fullStr Effects of image reconstruction on fiber orientation mapping from multichannel diffusion MRI: reducing the noise floor using SENSE.
title_full_unstemmed Effects of image reconstruction on fiber orientation mapping from multichannel diffusion MRI: reducing the noise floor using SENSE.
title_short Effects of image reconstruction on fiber orientation mapping from multichannel diffusion MRI: reducing the noise floor using SENSE.
title_sort effects of image reconstruction on fiber orientation mapping from multichannel diffusion mri reducing the noise floor using sense
work_keys_str_mv AT sotiropoulossn effectsofimagereconstructiononfiberorientationmappingfrommultichanneldiffusionmrireducingthenoisefloorusingsense
AT moellers effectsofimagereconstructiononfiberorientationmappingfrommultichanneldiffusionmrireducingthenoisefloorusingsense
AT jbabdis effectsofimagereconstructiononfiberorientationmappingfrommultichanneldiffusionmrireducingthenoisefloorusingsense
AT xuj effectsofimagereconstructiononfiberorientationmappingfrommultichanneldiffusionmrireducingthenoisefloorusingsense
AT anderssonj effectsofimagereconstructiononfiberorientationmappingfrommultichanneldiffusionmrireducingthenoisefloorusingsense
AT auerbache effectsofimagereconstructiononfiberorientationmappingfrommultichanneldiffusionmrireducingthenoisefloorusingsense
AT yacoube effectsofimagereconstructiononfiberorientationmappingfrommultichanneldiffusionmrireducingthenoisefloorusingsense
AT feinbergd effectsofimagereconstructiononfiberorientationmappingfrommultichanneldiffusionmrireducingthenoisefloorusingsense
AT setsompopk effectsofimagereconstructiononfiberorientationmappingfrommultichanneldiffusionmrireducingthenoisefloorusingsense
AT waldl effectsofimagereconstructiononfiberorientationmappingfrommultichanneldiffusionmrireducingthenoisefloorusingsense
AT behrenst effectsofimagereconstructiononfiberorientationmappingfrommultichanneldiffusionmrireducingthenoisefloorusingsense
AT ugurbilk effectsofimagereconstructiononfiberorientationmappingfrommultichanneldiffusionmrireducingthenoisefloorusingsense
AT lengletc effectsofimagereconstructiononfiberorientationmappingfrommultichanneldiffusionmrireducingthenoisefloorusingsense