Deep learning approaches to multimodal MRI brain age estimation
<p>Brain ageing remains an intricate, multifaceted process, marked not just by chronological time but by a myriad of structural, functional, and microstructural changes that often lead to discrepancies between actual age and the age inferred from neuroimaging. Machine learning methods, and esp...
Päätekijä: | Roibu, A-C |
---|---|
Muut tekijät: | Griffanti, L |
Aineistotyyppi: | Opinnäyte |
Kieli: | English |
Julkaistu: |
2023
|
Aiheet: |
Samankaltaisia teoksia
-
Machine Learning and Deep Learning Approaches in Lifespan Brain Age Prediction: A Comprehensive Review
Tekijä: Yutong Wu, et al.
Julkaistu: (2024-08-01) -
Machine Learning in Acute Stroke Neuroimaging. A Systematic Literature Review
Tekijä: D. Matuliauskas, et al.
Julkaistu: (2023-10-01) -
Improving Individual Brain Age Prediction Using an Ensemble Deep Learning Framework
Tekijä: Chen-Yuan Kuo, et al.
Julkaistu: (2021-03-01) -
Investigating the role of inhibition in human motor learning
Tekijä: Grigoras, IF
Julkaistu: (2022) -
Artificial intelligence for diffusion MRI-based tissue microstructure estimation in the human brain: an overview
Tekijä: Abrar Faiyaz, et al.
Julkaistu: (2023-04-01)