Rational minimax approximation via adaptive barycentric representations

Computing rational minimax approximations can be very challenging when there are singularities on or near the interval of approximation - precisely the case where rational functions outperform polynomials by a landslide. We show that far more robust algorithms than previously available can be develo...

Full description

Bibliographic Details
Main Authors: Filip, S, Nakatsukasa, Y, Trefethen, L, Beckermann, B
Format: Journal article
Published: Society for Industrial and Applied Mathematics 2018
Description
Summary:Computing rational minimax approximations can be very challenging when there are singularities on or near the interval of approximation - precisely the case where rational functions outperform polynomials by a landslide. We show that far more robust algorithms than previously available can be developed by making use of rational barycentric representations whose support points are chosen in an adaptive fashion as the approximant is computed. Three variants of this barycentric strategy are all shown to be powerful: (1) a classical Remez algorithm, (2) a "AAA-Lawson" method of iteratively reweighted least-squares, and (3) a differential correction algorithm. Our preferred combination, implemented in the Chebfun MINIMAX code, is to use (2) in an initial phase and then switch to (1) for generically quadratic convergence. By such methods we can calculate approximations up to type (80, 80) of $|x|$ on $[-1, 1]$ in standard 16-digit floating point arithmetic, a problem for which Varga, Ruttan, and Carpenter required 200-digit extended precision.