Decidability of membership problems for flat rational subsets of GL (2, Q) and singular matrices
<p>This work relates numerical problems on matrices over the rationals to symbolic algorithms on words and finite automata. Using exact algebraic algorithms and symbolic computation, we prove new decidability results for 2 × 2 matrices over Q. Namely, we introduce a notion of flat rational set...
Main Authors: | Diekert, V, Potapov, I, Semukhin, P |
---|---|
פורמט: | Conference item |
שפה: | English |
יצא לאור: |
Association for Computing Machinery
2020
|
פריטים דומים
-
Membership problem in GL(2, Z) extended by singular matrices
מאת: Potapov, I, et al.
יצא לאור: (2017) -
Decidability of the membership problem for 2 x 2 integer matrices
מאת: Potapov, I, et al.
יצא לאור: (2017) -
On the decidability of membership in matrix-exponential semigroups
מאת: Ouaknine, J, et al.
יצא לאור: (2019) -
The Competence of the Judicial Authority in Deciding the Validity of Parliamentary Membership
מאת: Faysal shatnawy
יצא לאור: (2015-12-01) -
The membership problem for hypergeometric sequences with rational parameters
מאת: Nosan, K, et al.
יצא לאור: (2022)