Decidability of membership problems for flat rational subsets of GL (2, Q) and singular matrices
<p>This work relates numerical problems on matrices over the rationals to symbolic algorithms on words and finite automata. Using exact algebraic algorithms and symbolic computation, we prove new decidability results for 2 × 2 matrices over Q. Namely, we introduce a notion of flat rational set...
Asıl Yazarlar: | Diekert, V, Potapov, I, Semukhin, P |
---|---|
Materyal Türü: | Conference item |
Dil: | English |
Baskı/Yayın Bilgisi: |
Association for Computing Machinery
2020
|
Benzer Materyaller
-
Membership problem in GL(2, Z) extended by singular matrices
Yazar:: Potapov, I, ve diğerleri
Baskı/Yayın Bilgisi: (2017) -
Decidability of the membership problem for 2 x 2 integer matrices
Yazar:: Potapov, I, ve diğerleri
Baskı/Yayın Bilgisi: (2017) -
On the decidability of membership in matrix-exponential semigroups
Yazar:: Ouaknine, J, ve diğerleri
Baskı/Yayın Bilgisi: (2019) -
The Competence of the Judicial Authority in Deciding the Validity of Parliamentary Membership
Yazar:: Faysal shatnawy
Baskı/Yayın Bilgisi: (2015-12-01) -
The membership problem for hypergeometric sequences with rational parameters
Yazar:: Nosan, K, ve diğerleri
Baskı/Yayın Bilgisi: (2022)