Decidability of membership problems for flat rational subsets of GL (2, Q) and singular matrices
<p>This work relates numerical problems on matrices over the rationals to symbolic algorithms on words and finite automata. Using exact algebraic algorithms and symbolic computation, we prove new decidability results for 2 × 2 matrices over Q. Namely, we introduce a notion of flat rational set...
Автори: | Diekert, V, Potapov, I, Semukhin, P |
---|---|
Формат: | Conference item |
Мова: | English |
Опубліковано: |
Association for Computing Machinery
2020
|
Схожі ресурси
Схожі ресурси
-
Membership problem in GL(2, Z) extended by singular matrices
за авторством: Potapov, I, та інші
Опубліковано: (2017) -
Decidability of the membership problem for 2 x 2 integer matrices
за авторством: Potapov, I, та інші
Опубліковано: (2017) -
On the decidability of membership in matrix-exponential semigroups
за авторством: Ouaknine, J, та інші
Опубліковано: (2019) -
The Competence of the Judicial Authority in Deciding the Validity of Parliamentary Membership
за авторством: Faysal shatnawy
Опубліковано: (2015-12-01) -
The membership problem for hypergeometric sequences with rational parameters
за авторством: Nosan, K, та інші
Опубліковано: (2022)