Transient aging in fractional Brownian and Langevin-equation motion
Stochastic processes driven by stationary fractional Gaussian noise, that is, fractional Brownian motion and fractional Langevin-equation motion, are usually considered to be ergodic in the sense that, after an algebraic relaxation, time and ensemble averages of physical observables coincide. Recent...
Váldodahkkit: | Kursawe, J, Schulz, J, Metzler, R |
---|---|
Materiálatiipa: | Journal article |
Almmustuhtton: |
American Physical Society
2013
|
Geahča maid
-
Fractional Langevin Equation Model for Characterization of Anomalous Brownian Motion from NMR Signals
Dahkki: Lisý Vladimír, et al.
Almmustuhtton: (2018-01-01) -
Fuzzy stochastic differential equations driven by fractional Brownian motion
Dahkki: Hossein Jafari, et al.
Almmustuhtton: (2021-01-01) -
Modelling intermittent anomalous diffusion with switching fractional Brownian motion
Dahkki: Michał Balcerek, et al.
Almmustuhtton: (2023-01-01) -
Nonlocal fractional stochastic differential equations driven by fractional Brownian motion
Dahkki: Jingyun Lv, et al.
Almmustuhtton: (2017-07-01) -
Exponential stability for neutral stochastic functional partial differential equations driven by Brownian motion and fractional Brownian motion
Dahkki: Xinwen Zhang, et al.
Almmustuhtton: (2018-08-01)