Stein's method for discrete Gibbs measures

Stein's method provides a way of bounding the distance of a probability distribution to a target distribution $\mu$. Here we develop Stein's method for the class of discrete Gibbs measures with a density $e^V$, where $V$ is the energy function. Using size bias couplings, we treat an exampl...

Description complète

Détails bibliographiques
Auteurs principaux: Eichelsbacher, P, Reinert, G
Format: Journal article
Langue:English
Publié: 2008
Description
Résumé:Stein's method provides a way of bounding the distance of a probability distribution to a target distribution $\mu$. Here we develop Stein's method for the class of discrete Gibbs measures with a density $e^V$, where $V$ is the energy function. Using size bias couplings, we treat an example of Gibbs convergence for strongly correlated random variables due to Chayes and Klein [Helv. Phys. Acta 67 (1994) 30--42]. We obtain estimates of the approximation to a grand-canonical Gibbs ensemble. As side results, we slightly improve on the Barbour, Holst and Janson [Poisson Approximation (1992)] bounds for Poisson approximation to the sum of independent indicators, and in the case of the geometric distribution we derive better nonuniform Stein bounds than Brown and Xia [Ann. Probab. 29 (2001) 1373--1403].