Rapidly exploring learning trees

Inverse Reinforcement Learning (IRL) for path planning enables robots to learn cost functions for difficult tasks from demonstration, instead of hard-coding them. However, IRL methods face practical limitations that stem from the need to repeat costly planning procedures. In this paper, we propose R...

Descripción completa

Detalles Bibliográficos
Autores principales: Shiarlis, K, Messias, J, Whiteson, S
Formato: Conference item
Publicado: IEEE 2017

Ejemplares similares