A uniform bound on the nilpotency degree of certain subalgebras of Kac–Moody algebras
<p>Let <em>g</em> be a Kac–Moody algebra and <em>b</em><sub>1</sub>,<em>b</em><sub>2</sub> be Borel subalgebras of opposite signs. The intersection <em>b</em>=<em>b</em><sub>1</sub>∩<em>b</...
Main Author: | |
---|---|
Format: | Journal article |
Language: | English |
Published: |
Elsevier
2007
|
Subjects: |
_version_ | 1826289962425778176 |
---|---|
author | Caprace, P |
author_facet | Caprace, P |
author_sort | Caprace, P |
collection | OXFORD |
description | <p>Let <em>g</em> be a Kac–Moody algebra and <em>b</em><sub>1</sub>,<em>b</em><sub>2</sub> be Borel subalgebras of opposite signs. The intersection <em>b</em>=<em>b</em><sub>1</sub>∩<em>b</em><sub>2</sub> is a finite-dimensional solvable subalgebra of <em>g</em>. We show that the nilpotency degree of [<em>b</em>,<em>b</em>] is bounded above by a constant depending only on <em>g</em>. This confirms a conjecture of Y. Billig and A. Pianzola [Y. Billig, A. Pianzola, Root strings with two consecutive real roots, Tohoku Math. J. (2) 47 (3) (1995) 391–403].</p> |
first_indexed | 2024-03-07T02:36:54Z |
format | Journal article |
id | oxford-uuid:a918774f-d65f-4066-b736-3bf1642b1c10 |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-07T02:36:54Z |
publishDate | 2007 |
publisher | Elsevier |
record_format | dspace |
spelling | oxford-uuid:a918774f-d65f-4066-b736-3bf1642b1c102022-03-27T03:06:04ZA uniform bound on the nilpotency degree of certain subalgebras of Kac–Moody algebrasJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:a918774f-d65f-4066-b736-3bf1642b1c10MathematicsEnglishOxford University Research Archive - ValetElsevier2007Caprace, P<p>Let <em>g</em> be a Kac–Moody algebra and <em>b</em><sub>1</sub>,<em>b</em><sub>2</sub> be Borel subalgebras of opposite signs. The intersection <em>b</em>=<em>b</em><sub>1</sub>∩<em>b</em><sub>2</sub> is a finite-dimensional solvable subalgebra of <em>g</em>. We show that the nilpotency degree of [<em>b</em>,<em>b</em>] is bounded above by a constant depending only on <em>g</em>. This confirms a conjecture of Y. Billig and A. Pianzola [Y. Billig, A. Pianzola, Root strings with two consecutive real roots, Tohoku Math. J. (2) 47 (3) (1995) 391–403].</p> |
spellingShingle | Mathematics Caprace, P A uniform bound on the nilpotency degree of certain subalgebras of Kac–Moody algebras |
title | A uniform bound on the nilpotency degree of certain subalgebras of Kac–Moody algebras |
title_full | A uniform bound on the nilpotency degree of certain subalgebras of Kac–Moody algebras |
title_fullStr | A uniform bound on the nilpotency degree of certain subalgebras of Kac–Moody algebras |
title_full_unstemmed | A uniform bound on the nilpotency degree of certain subalgebras of Kac–Moody algebras |
title_short | A uniform bound on the nilpotency degree of certain subalgebras of Kac–Moody algebras |
title_sort | uniform bound on the nilpotency degree of certain subalgebras of kac moody algebras |
topic | Mathematics |
work_keys_str_mv | AT capracep auniformboundonthenilpotencydegreeofcertainsubalgebrasofkacmoodyalgebras AT capracep uniformboundonthenilpotencydegreeofcertainsubalgebrasofkacmoodyalgebras |