A uniform bound on the nilpotency degree of certain subalgebras of Kac–Moody algebras

<p>Let <em>g</em> be a Kac–Moody algebra and <em>b</em><sub>1</sub>,<em>b</em><sub>2</sub> be Borel subalgebras of opposite signs. The intersection <em>b</em>=<em>b</em><sub>1</sub>∩<em>b</...

Full description

Bibliographic Details
Main Author: Caprace, P
Format: Journal article
Language:English
Published: Elsevier 2007
Subjects:
_version_ 1826289962425778176
author Caprace, P
author_facet Caprace, P
author_sort Caprace, P
collection OXFORD
description <p>Let <em>g</em> be a Kac–Moody algebra and <em>b</em><sub>1</sub>,<em>b</em><sub>2</sub> be Borel subalgebras of opposite signs. The intersection <em>b</em>=<em>b</em><sub>1</sub>∩<em>b</em><sub>2</sub> is a finite-dimensional solvable subalgebra of <em>g</em>. We show that the nilpotency degree of [<em>b</em>,<em>b</em>] is bounded above by a constant depending only on <em>g</em>. This confirms a conjecture of Y. Billig and A. Pianzola [Y. Billig, A. Pianzola, Root strings with two consecutive real roots, Tohoku Math. J. (2) 47 (3) (1995) 391–403].</p>
first_indexed 2024-03-07T02:36:54Z
format Journal article
id oxford-uuid:a918774f-d65f-4066-b736-3bf1642b1c10
institution University of Oxford
language English
last_indexed 2024-03-07T02:36:54Z
publishDate 2007
publisher Elsevier
record_format dspace
spelling oxford-uuid:a918774f-d65f-4066-b736-3bf1642b1c102022-03-27T03:06:04ZA uniform bound on the nilpotency degree of certain subalgebras of Kac–Moody algebrasJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:a918774f-d65f-4066-b736-3bf1642b1c10MathematicsEnglishOxford University Research Archive - ValetElsevier2007Caprace, P<p>Let <em>g</em> be a Kac–Moody algebra and <em>b</em><sub>1</sub>,<em>b</em><sub>2</sub> be Borel subalgebras of opposite signs. The intersection <em>b</em>=<em>b</em><sub>1</sub>∩<em>b</em><sub>2</sub> is a finite-dimensional solvable subalgebra of <em>g</em>. We show that the nilpotency degree of [<em>b</em>,<em>b</em>] is bounded above by a constant depending only on <em>g</em>. This confirms a conjecture of Y. Billig and A. Pianzola [Y. Billig, A. Pianzola, Root strings with two consecutive real roots, Tohoku Math. J. (2) 47 (3) (1995) 391–403].</p>
spellingShingle Mathematics
Caprace, P
A uniform bound on the nilpotency degree of certain subalgebras of Kac–Moody algebras
title A uniform bound on the nilpotency degree of certain subalgebras of Kac–Moody algebras
title_full A uniform bound on the nilpotency degree of certain subalgebras of Kac–Moody algebras
title_fullStr A uniform bound on the nilpotency degree of certain subalgebras of Kac–Moody algebras
title_full_unstemmed A uniform bound on the nilpotency degree of certain subalgebras of Kac–Moody algebras
title_short A uniform bound on the nilpotency degree of certain subalgebras of Kac–Moody algebras
title_sort uniform bound on the nilpotency degree of certain subalgebras of kac moody algebras
topic Mathematics
work_keys_str_mv AT capracep auniformboundonthenilpotencydegreeofcertainsubalgebrasofkacmoodyalgebras
AT capracep uniformboundonthenilpotencydegreeofcertainsubalgebrasofkacmoodyalgebras