Limiting stochastic processes of shift-periodic dynamical systems
A shift-periodic map is a one-dimensional map from the real line to itself which is periodic up to a linear translation and allowed to have singularities. It is shown that iterative sequences xn+1 = F(xn) generated by such maps display rich dynamical behaviour. The integer parts ⌊xn⌋ give a discrete...
主要な著者: | Stadlmann, J, Erban, R |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Royal Society
2019
|
類似資料
-
DETERMINISTIC AND STOCHASTIC MODELS OF DYNAMICS OF CHEMICAL SYSTEMS
著者:: Vejchodsky, T, 等
出版事項: (2008) -
Stochastic modelling of reaction-diffusion processes: algorithms for bimolecular reactions.
著者:: Erban, R, 等
出版事項: (2009) -
Reactive boundary conditions for stochastic simulations of reaction-diffusion processes.
著者:: Erban, R, 等
出版事項: (2007) -
Reactive boundary conditions for stochastic simulations of reaction-diffusion processes
著者:: Erban, R, 等
出版事項: (2007) -
Stochastic modelling of reaction-diffusion processes:
algorithms for bimolecular reactions
著者:: Erban, R, 等
出版事項: (2009)