Limiting stochastic processes of shift-periodic dynamical systems
A shift-periodic map is a one-dimensional map from the real line to itself which is periodic up to a linear translation and allowed to have singularities. It is shown that iterative sequences xn+1 = F(xn) generated by such maps display rich dynamical behaviour. The integer parts ⌊xn⌋ give a discrete...
Hlavní autoři: | Stadlmann, J, Erban, R |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
Royal Society
2019
|
Podobné jednotky
-
DETERMINISTIC AND STOCHASTIC MODELS OF DYNAMICS OF CHEMICAL SYSTEMS
Autor: Vejchodsky, T, a další
Vydáno: (2008) -
Stochastic modelling of reaction-diffusion processes: algorithms for bimolecular reactions.
Autor: Erban, R, a další
Vydáno: (2009) -
Reactive boundary conditions for stochastic simulations of reaction-diffusion processes.
Autor: Erban, R, a další
Vydáno: (2007) -
Reactive boundary conditions for stochastic simulations of reaction-diffusion processes
Autor: Erban, R, a další
Vydáno: (2007) -
Stochastic modelling of reaction-diffusion processes:
algorithms for bimolecular reactions
Autor: Erban, R, a další
Vydáno: (2009)