Percolation on dense graph sequences

In this paper we determine the percolation threshold for an arbitrary sequence of dense graphs $(G_n)$. Let $\lambda_n$ be the largest eigenvalue of the adjacency matrix of $G_n$, and let $G_n(p_n)$ be the random subgraph of $G_n$ obtained by keeping each edge independently with probability $p_n$. W...

Full description

Bibliographic Details
Main Authors: Bollobás, B, Borgs, C, Chayes, J, Riordan, O
Format: Journal article
Language:English
Published: 2007
Description
Summary:In this paper we determine the percolation threshold for an arbitrary sequence of dense graphs $(G_n)$. Let $\lambda_n$ be the largest eigenvalue of the adjacency matrix of $G_n$, and let $G_n(p_n)$ be the random subgraph of $G_n$ obtained by keeping each edge independently with probability $p_n$. We show that the appearance of a giant component in $G_n(p_n)$ has a sharp threshold at $p_n=1/\lambda_n$. In fact, we prove much more: if $(G_n)$ converges to an irreducible limit, then the density of the largest component of $G_n(c/n)$ tends to the survival probability of a multi-type branching process defined in terms of this limit. Here the notions of convergence and limit are those of Borgs, Chayes, Lov\'asz, S\'os and Vesztergombi. In addition to using basic properties of convergence, we make heavy use of the methods of Bollob\'as, Janson and Riordan, who used multi-type branching processes to study the emergence of a giant component in a very broad family of sparse inhomogeneous random graphs.