Percolation on dense graph sequences

In this paper we determine the percolation threshold for an arbitrary sequence of dense graphs $(G_n)$. Let $\lambda_n$ be the largest eigenvalue of the adjacency matrix of $G_n$, and let $G_n(p_n)$ be the random subgraph of $G_n$ obtained by keeping each edge independently with probability $p_n$. W...

全面介绍

书目详细资料
Main Authors: Bollobás, B, Borgs, C, Chayes, J, Riordan, O
格式: Journal article
语言:English
出版: 2007
实物特征
总结:In this paper we determine the percolation threshold for an arbitrary sequence of dense graphs $(G_n)$. Let $\lambda_n$ be the largest eigenvalue of the adjacency matrix of $G_n$, and let $G_n(p_n)$ be the random subgraph of $G_n$ obtained by keeping each edge independently with probability $p_n$. We show that the appearance of a giant component in $G_n(p_n)$ has a sharp threshold at $p_n=1/\lambda_n$. In fact, we prove much more: if $(G_n)$ converges to an irreducible limit, then the density of the largest component of $G_n(c/n)$ tends to the survival probability of a multi-type branching process defined in terms of this limit. Here the notions of convergence and limit are those of Borgs, Chayes, Lov\'asz, S\'os and Vesztergombi. In addition to using basic properties of convergence, we make heavy use of the methods of Bollob\'as, Janson and Riordan, who used multi-type branching processes to study the emergence of a giant component in a very broad family of sparse inhomogeneous random graphs.