A logarithmic approximation of linearly-ordered colourings

A linearly ordered (LO) k-colouring of a hypergraph assigns to each vertex a colour from the set {0,1,…,k-1} in such a way that each hyperedge has a unique maximum element. Barto, Batistelli, and Berg conjectured that it is NP-hard to find an LO k-colouring of an LO 2-colourable 3-uniform hypergraph...

Celý popis

Podrobná bibliografie
Hlavní autoři: Håstad, J, Martinsson, B, Nakajima, T-V, Zivny, S
Médium: Conference item
Jazyk:English
Vydáno: Schloss Dagstuhl 2024
Popis
Shrnutí:A linearly ordered (LO) k-colouring of a hypergraph assigns to each vertex a colour from the set {0,1,…,k-1} in such a way that each hyperedge has a unique maximum element. Barto, Batistelli, and Berg conjectured that it is NP-hard to find an LO k-colouring of an LO 2-colourable 3-uniform hypergraph for any constant k ≥ 2 [STACS'21] but even the case k = 3 is still open. Nakajima and Živný gave polynomial-time algorithms for finding, given an LO 2-colourable 3-uniform hypergraph, an LO colouring with O^*(√n) colours [ICALP'22] and an LO colouring with O^*(n^(1/3)) colours [ACM ToCT'23]. Very recently, Louis, Newman, and Ray gave an SDP-based algorithm with O^*(n^(1/5)) colours. We present two simple polynomial-time algorithms that find an LO colouring with O(log₂(n)) colours, which is an exponential improvement.