A logarithmic approximation of linearly-ordered colourings
A linearly ordered (LO) k-colouring of a hypergraph assigns to each vertex a colour from the set {0,1,…,k-1} in such a way that each hyperedge has a unique maximum element. Barto, Batistelli, and Berg conjectured that it is NP-hard to find an LO k-colouring of an LO 2-colourable 3-uniform hypergraph...
Hlavní autoři: | Håstad, J, Martinsson, B, Nakajima, T-V, Zivny, S |
---|---|
Médium: | Conference item |
Jazyk: | English |
Vydáno: |
Schloss Dagstuhl
2024
|
Podobné jednotky
-
Linearly ordered colourings of hypergraphs
Autor: Nakajima, T-V, a další
Vydáno: (2022) -
Linearly ordered colourings of hypergraphs
Autor: Nakajima, T-V, a další
Vydáno: (2022) -
Approximate graph colouring and crystals
Autor: Ciardo, L, a další
Vydáno: (2023) -
Approximate graph colouring and the hollow shadow
Autor: Zivny, S, a další
Vydáno: (2023) -
Semidefinite Approximations of the Matrix Logarithm
Autor: Fawzi, Hamza, a další
Vydáno: (2019)