Variational analysis of the influence of grain shape anisotropy on shear viscosity in Nabarro-Herring-Coble creep

The effect of strain-induced grain shape anisotropy on diffusional creep viscosity is analysed in two dimensions via a model representing grains by cylinders with elliptical cross section. Both cases of dominance of grain boundary diffusion and lattice diffusion are considered. Anisotropic creep vis...

ver descrição completa

Detalhes bibliográficos
Principais autores: Delannay, F, Brassart, L
Formato: Journal article
Idioma:English
Publicado em: Elsevier 2020
Descrição
Resumo:The effect of strain-induced grain shape anisotropy on diffusional creep viscosity is analysed in two dimensions via a model representing grains by cylinders with elliptical cross section. Both cases of dominance of grain boundary diffusion and lattice diffusion are considered. Anisotropic creep viscosity is described by two coefficients calculated by considering different loading configurations with respect to the ellipse axes. Upper and lower bounds on these coefficients are obtained using kinematic and statical variational principles and assuming affine velocity, or uniform stress trial boundary fields, respectively. The analysis emphasises the dependence of the viscosity coefficients on aspect ratio and grain boundary viscosity. The difference between the bounds increases with grain elongation. A method is proposed for deriving estimates for the effective viscosity coefficients by coupling the two bounds. The strain hardening effect is analysed. Lattice diffusion contributes less to viscosity anisotropy than diffusion and sliding at grain boundaries.