Block factor-width-two matrices and their applications to semidefinite and sum-of-squares optimization
Semidefinite and sum-of-squares (SOS) optimization are fundamental computational tools in many areas, including linear and nonlinear systems theory. However, the scale of problems that can be addressed reliably and efficiently is still limited. In this paper, we introduce a new notion of block facto...
Hlavní autoři: | Zheng, Y, Sootla, A, Papachristodoulou, A |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
IEEE
2022
|
Podobné jednotky
-
Decomposed structured subsets for semidefinite and sum-of-squares optimization
Autor: Miller, J, a další
Vydáno: (2022) -
Chordal and factor-width decompositions for scalable semidefinite and polynomial optimization
Autor: Zheng, Y, a další
Vydáno: (2021) -
Decomposition and completion of sum-of-squares matrices
Autor: Zheng, Y, a další
Vydáno: (2018) -
Equivariant Semidefinite Lifts and Sum-of-Squares Hierarchies
Autor: Fawzi, Hamza, a další
Vydáno: (2016) -
Sparse sums of squares on finite abelian groups and improved semidefinite lifts
Autor: Fawzi, Hamza, a další
Vydáno: (2016)