Dimensionality reduction techniques for global optimization
<p>Though ubiquitous in applications, global optimisation problems are generally the most computationally intense due to their solution time growing exponentially with linear increase in their dimensions (this is the well known/so called ‘curse of dimensionality’). In this thesis, we show that...
Hlavní autor: | Otemissov, A |
---|---|
Další autoři: | Cartis, C |
Médium: | Diplomová práce |
Jazyk: | English |
Vydáno: |
2020
|
Témata: |
Podobné jednotky
-
General inertial proximal stochastic variance reduction gradient for nonconvex nonsmooth optimization
Autor: Shuya Sun, a další
Vydáno: (2023-02-01) -
Stochastic Combinatorial Optimization with Risk
Autor: Nikolova, Evdokia
Vydáno: (2008) -
Stochastic Smoothing Methods for Nonsmooth Global Optimization
Autor: V.I. Norkin
Vydáno: (2020-03-01) -
Discrete global optimization problems with a modified discrete filled function /
Autor: Yong, Jian Yang, a další -
Acceleration in first-order optimization methods: promenading beyond convexity or smoothness, and applications
Autor: Martinez Rubio, D
Vydáno: (2021)