Discontinuous hp-finite element methods for advection-diffusion-reaction problems
We consider the hp-version of the discontinuous Galerkin finite element method (DGFEM) for second-order partial differential equations with nonnegative characteristic form. This class of equations includes second-order elliptic and parabolic equations, advection-reaction equations, as well as proble...
Main Authors: | , , |
---|---|
格式: | Journal article |
語言: | English |
出版: |
2002
|
總結: | We consider the hp-version of the discontinuous Galerkin finite element method (DGFEM) for second-order partial differential equations with nonnegative characteristic form. This class of equations includes second-order elliptic and parabolic equations, advection-reaction equations, as well as problems of mixed hyperbolic-elliptic-parabolic type. Our main concern is the error analysis of the method in the absence of streamline-diffusion stabilization. In the hyperbolic case, an hp-optimal error bound is derived; here, we consider only advection-reaction problems which satisfy a certain (standard) positivity condition. In the self-adjoint elliptic case, an error bound that is h-optimal and p-suboptimal by 1/2 a power of p is obtained. These estimates are then combined to deduce an error bound in the general case. For elementwise analytic solutions the method exhibits exponential rates of convergence under p-refinement. The theoretical results are illustrated by numerical experiments. |
---|