Design of bright, fiber-coupled and fully factorable photon pair sources

From quantum computation to quantum key distribution, many quantum-enhanced applications rely on the ability to generate pure single photons. Even though the process of spontaneous parametric downconversion (SPDC) is widely used as the basis for photon-pair sources, the conditions for pure heralded...

תיאור מלא

מידע ביבליוגרפי
Main Authors: Vicent, L, U'Ren, AB, Rangarajan, R, Osorio, C, Torres, J, Zhang, L, Walmsley, I
פורמט: Journal article
שפה:English
יצא לאור: 2010
תיאור
סיכום:From quantum computation to quantum key distribution, many quantum-enhanced applications rely on the ability to generate pure single photons. Even though the process of spontaneous parametric downconversion (SPDC) is widely used as the basis for photon-pair sources, the conditions for pure heralded single-photon generation, taking into account both spectral and spatial degrees of freedom, have not been fully described. We present an analysis of the spatio-temporal correlations present in photon pairs produced by type-I, non-collinear SPDC. We derive a set of conditions for full factorability in all degrees of freedom-required for the heralding of pure single photons-between the signal and idler modes. In this paper, we consider several possible approaches for the design of bright, fiber-coupled and factorable photon-pair sources. We show through numerical simulations of the exact equations that sources based on: (i) the suppression of spatio-temporal entanglement according to our derived conditions and (ii) a tightly focused pump beam together with optimized fibercollection modes and spectral filtering of the signal and idler photon pairs, lead to a source brightness of the same order of magnitude. Likewise, we find that both of these sources lead to a drastically higher factorable photon-pair flux, compared to an unengineered source. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.