Universal approximation of functions on sets
Modelling functions of sets, or equivalently, permutation-invariant functions, is a longstanding challenge in machine learning. Deep Sets is a popular method which is known to be a universal approximator for continuous set functions. We provide a theoretical analysis of Deep Sets which shows that th...
Huvudupphovsmän: | Wagstaff, E, Fuchs, FB, Engelcke, M, Osborne, MA, Posner, I |
---|---|
Materialtyp: | Journal article |
Språk: | English |
Publicerad: |
Journal of Machine Learning Research
2022
|
Liknande verk
Liknande verk
-
On the limitations of representing functions on sets
av: Wagstaff, E, et al.
Publicerad: (2019) -
Iterative SE(3)-transformers
av: Fuchs, FB, et al.
Publicerad: (2021) -
E(n) Equivariant Normalizing Flows
av: Satorras, VG, et al.
Publicerad: (2022) -
GENESIS-V2: inferring unordered object representations without iterative refinement
av: Engelcke, M, et al.
Publicerad: (2022) -
APEX: Unsupervised, object-centric scene segmentation and tracking for robot manipulation
av: Wu, Y, et al.
Publicerad: (2021)